If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-24X+113.75=0
a = 1; b = -24; c = +113.75;
Δ = b2-4ac
Δ = -242-4·1·113.75
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-11}{2*1}=\frac{13}{2} =6+1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+11}{2*1}=\frac{35}{2} =17+1/2 $
| 36+2d=44 | | 30+2x=-6 | | −12=−6(−8n+6)+8(−4+n) | | 2+5p=42 | | (x-12)^2-30.25=0 | | x4+5=7 | | -9x-7=-79 | | 17+1p=45 | | 22=10+6x | | –2x=43 | | 0.2x+0.6=-0.15 | | 0.2x+0.6=0.15 | | m/3=25 | | -12=15(6x+4)+7(x+6) | | 2700000=4d-350000 | | 82.80=13.6a+42 | | 6x-2x+11=-518 | | −12=5(6x+4)+7(x+6) | | 17)−12=5(6x+4)+7(x+6) | | 93=93c | | (x+32)(x+50)=2320 | | 59.4=6(m+3.1) | | 39=-4t+75 | | 2(x^2-6x+3)=0 | | 192=12f | | 82=-8g+90 | | 0=2(x^2-6x+3) | | w/29=14 | | -6(-1x-(-2))=8(x+2) | | 80.2=6.3t+36.1 | | 2/3x-4/5=1/2(x-6)-2/15 | | -7x(5)-3x(5)+2=-8x(5)-8 |